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Damping of nearly inviscid water waves
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The complete spectrum of decaying small-amplitude water waves is described. Viscosity is shown to be
responsible both for the decay of gravity-capillary waves and for the appearance of a class of viscous modes
that are omitted in the standard potential formulation. For sufficiently small viscfestyneasured by the
parametelC= v(gh®) “?<1, wherev is the kinematic viscosityy the acceleration due to gravity, ahcthe
undisturbed depth of the flujJdhe viscous modes decay more slowly than the gravity-capillary ones and must
be included in weakly nonlinear theories. The analysis indicates that for realistic val@@setond-order
corrections to the decay rate of gravity-capillary waves are important and suggests a straightforward resolution
of existing discrepancies between experimentally measured and theoretically calculated damping rates.
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PACS numbes): 47.20.Ky, 47.54+r

I. INTRODUCTION ing and viscosity, the quartet is shifted to the left by an
amounth 4 calculated below. Implicit in this approach is the
Recent years have seen a resurgence of interest in tl&ssumption that the viscous modes decay faster than the
Faraday systenil], i.e., the excitation of surface gravity- driven surface gravity-capillary modes retained in the de-
capillary waves by a time-dependent modulation of thescription. For the applicability of such a description it is
gravitational acceleration. This system exhibits a great varicritical therefore to identify the slowest decaying modes of
ety of pattern-forming behavid@] and at first sight appears the system. As shown below, fa@<1 the neglected viscous
to be relatively simple to analyze. This is because the liquidnodes typically decaynore slowlythan (or at the same rate
used in typical experiments, usually water, is almost inviscidas the surface gravity-capillary waves and hence need to be
[C=v(gh®) Y?<1, wherev is the kinematic viscosityg  retained in the theory.
the acceleration due to gravity, ahdthe undisturbed depth
of the fluid] and the system admits an elegant Hamiltonian
formulation[1]. In fact, as shown below, the small value of
C complicates the analysis enormously. This is because in
the presence of viscosity there are two typeqwiforced The dimensionless equations describing gravity-capillary
modes:surface gravity-capillary wavesvhich take the form  waves in a layer of viscous incompressible fluid of undis-
of slowly decaying oscillations, andiscousmodes, which  turbed depth (see Fig. 1 are
decay monotonically and are absent in the inviscid case. We
refer to the former as inviscid modes since they are present U+U-Vu=—Vp+CV2, V.u=0, (1)
even in the absence of viscosity. Current treatments focus on
the former and construct evolution equations for weakly non-
linear gravity-capillary waves, while ignoring the presenceWith the boundary conditions
of the viscous mode§l,3]. Two types of approaches are
used. In the firsf1] the Hamiltonian equation&r, equiva- u=0 aty=-1 2
lently, the equations derived from an averaged Lagrangian
are used to compute the nonlinear terms at third order in the
wave amplitude. For waves on a line with reflection s,ymme-and
try one obtains coupled equations for the complex ampli-
tudes of the modes expft+ikx), wherew= w(k) is the dis- Gtudy=v, Q)
persion relation. These equations have purely imaginary
coefficients. With viscosity added both modes decay at the
same rate. If the inviscid system is parametrically driven the VY ¢(z,t)
eigenvalues change from beingie (twice) to =\ *iw /<
[A\p,=0(a/g), wherea is the modulation amplitudei.e.,
each eigenvalue of double multiplicity splits, with one of h
each pair moving into the right half of the complex plane and
the other into the left half of the complex plafé]. The
eigenvalues thus form the familiar quartet characteristic of
Hamiltonian systems and describe a pair of growing and de-
caying left- and right-traveling waves. With parametric forc- FIG. 1. Sketch of the fluid layer.

Il. DISPERSION RELATION FOR VISCOUS WATER
WAVES
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all imposed at the free surfage= {(x,t). All lengths are in 16sinitk

units ofh and time in units ofyh/g; the inverse Bond num- ) _1p )
berT=o(pgh?) ! is a dimensionless measure of the impor-characterized by, ~C =1 (q,>0). These modes oscil-

tance of surface tension relative to gravity. The solutiond@t€ withO(1) dimensionless frequency; their decay rate is

of Egs. (1)—(5), linearized about the basic state Proportional to/C, provided thatC is sufficiently small.
(u,v,p,)=(0,0,0,0), are of the form Wu,p,;) However, the dispersion relatiofll) has another class of

= (U (Y),0i(Y), Pe(Y), £ )explkx+si), where solutions as well, theriscousmodes, for whichq|=0(1).
At leading order these are given by
SUc=—Tkpyt CUiyy— ko), 63 qcoshysinhk= kcostksinhy. (13
SUK=~Pry+ C(ukyy— K, (6D)  This equation has infinitely many solutions of the form
. g=i¢&,(k), n=1,2,...,where the{,(k) are monotonically
ikug+vyy,=0, () decreasing functions df satisfying
subject to the conditions ) 1
Iimé(k)=nm, nw<éy(k)<|n+ 5|
U(—1)=v(—1)=0 ®) o
and lim&,(k)=§,(0), &n(0)=tant,(0). (14)
k—0
s{k=vk(0), 2Cuyy(0)=p(0) = (1+K*T)¢, Thus
Uky(0) +ikvy(0)=0, (9) s=—C[k2+ &4 (k) ]+~ (15

together with the requiremeigy=0 imposed by mass con- and the viscous modes decenore slowlythan the gravity-
servation. capillary modes for sufficiently small values @. These
Whenk#0 Egs.(6) and (7) can be written as a single Purely decaying modes are absent from the inviscid formu-

fourth-order eigenvalue problem fog(y) whose solution is lation and are unaffected by capillary effects at leading order
of the form because they do not produce surface deformations. This can

be readily seen from Eq.(10), which implies that

vi(y) = acostky+ bsintky+ ccoshgy+dsintgy, (100  vkl,[viyl vyl =0(1) [recall thatk,|gq[=0(1) for these
modeg, and Eqgs.(6) and(7), which imply |u,|=0(1) and

whereq?=(s/C) + k2. The imposition of the boundary con- |P«/=O(C). From the second condition in E9) it now

ditions (8) and (9) leads to the dispersion relati¢f] follows that|{,|=0(C).
In the limit of very large wavelength&<1, the solutions
k(1+ Tk?)(qcoshysintk—kcostksinhg) of Eqg. (11) are given by
— C2[aK2q(K2+ q?) + (K*+ BK2q2+ q*)ksintksinhg k2 (qcoshy— sinhg) = — g°costy, (16)
— (5k*+ 2k2q2+ g*)qcostkcoshy], (11)  wherek=k/C=0(1). Thefrequency Im§) of the gravity-

capillary modes vanishes far< C'k,, wherek ;= 1.3650. At
from which one can computg=q(k;C,T) and hence obtain this point these modes split into two real decaying modes
s=C(g’—k?. For the special cas&=0 the solutions with Res(k)—0 and Re(k)— — (7/2)2C, ask— 0. The vis-
are of the form (g,v0,P0,l0)<(cog(n+3)7y],0,0,0), cous modes are also given by Efj6), but withq=iq; . For
n=0,1,2..., with s=—C(n+%)27% which is always these modes(k)——C(n+3)*n% n=1.2,..., ask—0,
strictly negative. and the viscous modes approach kixe0 results, except that

In the following we study the asymptotic behavior of the S(0)=0 is excluded by mass conservation.

solutionss of Eq. (11) when C<1. We distinguish three ~ Whenk>1 the viscous modepq=0(1)] decay at the
different regimes depending on the magnitude of the wavéate s= —C(k?+n?x?), while the gravity-capillary modes

numberk. (q,>1) satisfy
Whenk=0(1), i.e., the wavelength of the modes is of ~4 amomn o ~m3 =3 =2
the order of the depth of the fluid layer, the dispersion rela- q°+2q°k°—4qk’+k°+k*=0,

tion (11) has two types of solutions. Earlier work focused on _ _
the gravity-capillary modes|6] k=kC¥T, q=qC¥T, (17
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FIG. 2. Dispersion relatios(k) for T=1 andC=10° in the three ranges & identified in Sec. ll:(@) gravity-capillary(“inviscid” )
modes andb) first two viscous modes. Dots indicate the exact solution of(Ef); the asymptotic result€l2) throughO(C?) andO(C)

are indicated by dashed and solid lines, respectively.

with k=0(1) and q=0(1). For k=k,T/C? where

k,=1.7200, th ill hel i
2 00, the capillary modes are overwhelmed by Vlscosé'ealistio values ofC<1, i.e., the leading-order asymptotic

approximation to the decay rate provides a poor approxima-
tion to the decay rate under experimentally relevant condi-

ity and again split into a pair of decaying real modes whos
leading-order decay rates are given by

T
s=—0.9124K*+ - - -, s=—5eto. (19

These results are illustrated in Fig. 2 fér=10 ¢ and
T=1. The figures showa) Re(s) and Im(s) for the slowest-
decaying gravity-capillary mode an@) Re(s) for the two
slowest-decaying viscous modes, as functionk dbr the
three different ranges &f identified above. The dots indicate
the exact solutions of the dispersion relatidri) computed

term in Eq.(12) must be retained. As discussed further be-

low, this effect becomes more important for largend more

tions. This is because tH@(C?) decay rate of the gravity-

capillary modes decreases exponentially with increaging

and eventually becomes negligible compared with@{€)

term. This is a consequence of the fact that the damping that
comes from the boundary layer at the bottom wall becomes

exponentially small ak increases, allowing th@(Ck?) vis-
cous dissipation in the body of the fluid to dominate.

using numerical continuation techniques; the dashed lines

show the decay rate R&( given by Eq.(12) truncated at

As mentioned in Sec. |, current treatments of the Faraday
O(CY?) while the solid lines show the results from the trun- instability ignore the presence of the viscous modes and

IIl. DISCUSSION

cation atO(C). Evidently, fork=~2 or greater the second hence are formally valid only when



56 DAMPING OF NEARLY INVISCID WATER WAVES 5547

25 . , . , solid lines, respectively, and compared with the exact result
(points computed directly from Eq(11). Although the
2f . frequencies match very accurately the leading-order
asymptotic prediction, this is not so for the decay rates.
Im(s) ] For k>1 the leading-order asymptotic prediction underesti-
W+ ) mates the decay rate by an(1l) amount. However, the
figure also shows that, with th@(C) correction retained in
o5t Eqg. (12), the asymptotic prediction reproduces the exact
result very well. Indeed, the effect of this correction is of the
right order of magnitude to suggest that the discrepancy be-
tween the measured and predicted decay rates in the
Henderson-Miles experiments will disappear if the theoreti-
cal predictions includeO(C) corrections to the decay
rate. This suggestion will be explored elsewhf9¢ and is
supported by the observation that the discrepancy between
theory and measurement increases with the wave number;
cf. Fig. 3. A similar observation resolves discrepancies be-
tween leading-order asymptotics and measured decay rates
. ) ) ) of oscillations of liquid bridges, as discussed by Higuera
0 1 2 3 A et al.[10].

For the values o€ used by Henderson and Mil¢g] the

FIG. 3. Gravity-capillary modes fdt=0O(1), plotted as in Fig. damping rates of the gravity-capillary and viscous modes are
2, but for the parameter values used[ii: T=0.51x10"2 and  comparable. Despite this, the measured damping rates of the

C=0.43x10"4. gravity-capillary modes are most likely not contaminated by
the presence of the viscous modes because the damping rates
a Ay CK were obtained through surface elevation measurements and,
§+ PR (19 at leading order, the viscous modes do not deform the free
surface.

where, fork=0(1), —\q4 is given by the real part of As mentioned in the Introduction, a detailed knowledge of
Eq. (12). Since the viscous modes decay more slowly tharthe nearly neutral modes is of paramount importance in the
the (unforced gravity-capillary modes wheg is less than development of a weakly nonlinear theory for the Faraday
O(10 %), this condition cannot be satisfied in small viscosity system. The analysis presented in this paper demonstrates
liquids. In fact, we have examined a large number ofthat in typical experiment$7,8] the gravity-capillary and
the experiments described in the literature and find thayiscous modes decay with similar decay rates. Consequently,
al/g is always larger than 0.05, i.e., much larger than thehe appropriate normal form equations governing weakly
O(C) magnitude implied by Eq(19). nonlinear evolution of the driven modes must take into
These results indicate that the current theoretical undefyccount the infinitely many branches of almost neutral vis-
standing of nominally inviscid experiments may require ré-cos modes. These manifest themselves at second order in

examination. This Qonclusion is supported by the disagre_et-he wave amplitude as viscosity-induced slowly varying
ment between predicted and observed decay rates of the f'@freaming flowg11] and these in turn contribute to the co-

few natural modes of oscillatiofi7,8]. This disagreement efficients of the cubic terms in the amplitude equations for

persists even when steps are taken to eliminate uncertainti%-ﬁe gravity-capillary mode12]. These effects are known to

due to dissipation in the meniscus, at the free surface, or IE’se important in the theory ofunforced water wave13]

corners of the experimental apparatus, as in the experimen d tb wured b th based th tential
of Henderson and Milef7]. In these experiments a circular and cannot be captured by a theory based on the potentia
formulation: the small viscosity limit is a singular limit that

cylinder is filled to the brim, pinning the contact line to the X
(sharp rim of the container. The circular nature of the con- paljnqt be successfully treated.as a regular perturbat.mn. of.the
tainer reduces the unknown dissipation that might arise as viscid case. Similar conclusions apply to nearly inviscid
result of the presence of comers. The authors measured tHguid bridges, as discussed in detail by Nicland Vega
decay rates of the first few natur@linforced oscillation

modes in such a configuration for both clean and contami-

nated surfaces. While the measured frequencies agreed well

with leading-order asymptotics, the decay rates for a clean ACKNOWLEDGMENTS

surface differed from the predicted ones by as much as
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