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Damping of nearly inviscid water waves
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The complete spectrum of decaying small-amplitude water waves is described. Viscosity is shown to be
responsible both for the decay of gravity-capillary waves and for the appearance of a class of viscous modes
that are omitted in the standard potential formulation. For sufficiently small viscosity@as measured by the
parameterC[n(gh3)21/2!1, wheren is the kinematic viscosity,g the acceleration due to gravity, andh the
undisturbed depth of the fluid# the viscous modes decay more slowly than the gravity-capillary ones and must
be included in weakly nonlinear theories. The analysis indicates that for realistic values ofC second-order
corrections to the decay rate of gravity-capillary waves are important and suggests a straightforward resolution
of existing discrepancies between experimentally measured and theoretically calculated damping rates.
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I. INTRODUCTION

Recent years have seen a resurgence of interest in
Faraday system@1#, i.e., the excitation of surface gravity
capillary waves by a time-dependent modulation of
gravitational acceleration. This system exhibits a great v
ety of pattern-forming behavior@2# and at first sight appear
to be relatively simple to analyze. This is because the liq
used in typical experiments, usually water, is almost invis
@C[n(gh3)21/2!1, wheren is the kinematic viscosity,g
the acceleration due to gravity, andh the undisturbed depth
of the fluid# and the system admits an elegant Hamilton
formulation @1#. In fact, as shown below, the small value
C complicates the analysis enormously. This is becaus
the presence of viscosity there are two types of~unforced!
modes:surface gravity-capillary waves, which take the form
of slowly decaying oscillations, andviscousmodes, which
decay monotonically and are absent in the inviscid case.
refer to the former as inviscid modes since they are pre
even in the absence of viscosity. Current treatments focu
the former and construct evolution equations for weakly n
linear gravity-capillary waves, while ignoring the presen
of the viscous modes@1,3#. Two types of approaches ar
used. In the first@1# the Hamiltonian equations~or, equiva-
lently, the equations derived from an averaged Lagrang!
are used to compute the nonlinear terms at third order in
wave amplitude. For waves on a line with reflection symm
try one obtains coupled equations for the complex am
tudes of the modes exp(ivt6ikx), wherev5v(k) is the dis-
persion relation. These equations have purely imagin
coefficients. With viscosity added both modes decay at
same rate. If the inviscid system is parametrically driven
eigenvalues change from being6 iv ~twice! to 6lp6 iv
@lp5O(a/g), where a is the modulation amplitude#, i.e.,
each eigenvalue of double multiplicity splits, with one
each pair moving into the right half of the complex plane a
the other into the left half of the complex plane@4#. The
eigenvalues thus form the familiar quartet characteristic
Hamiltonian systems and describe a pair of growing and
caying left- and right-traveling waves. With parametric for
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ing and viscosity, the quartet is shifted to the left by a
amountld calculated below. Implicit in this approach is th
assumption that the viscous modes decay faster than
driven surface gravity-capillary modes retained in the d
scription. For the applicability of such a description it
critical therefore to identify the slowest decaying modes
the system. As shown below, forC!1 the neglected viscou
modes typically decaymore slowlythan~or at the same rate
as! the surface gravity-capillary waves and hence need to
retained in the theory.

II. DISPERSION RELATION FOR VISCOUS WATER
WAVES

The dimensionless equations describing gravity-capill
waves in a layer of viscous incompressible fluid of und
turbed depthh ~see Fig. 1! are

ut1u•¹u52¹p1C¹2u, ¹•u50, ~1!

with the boundary conditions

u50 at y521 ~2!

and

z t1uzx5v, ~3!

FIG. 1. Sketch of the fluid layer.
5544 © 1997 The American Physical Society
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56 5545DAMPING OF NEARLY INVISCID WATER WAVES
2CS uxzx
22zx~uy1vx!1vy

11zx
2 D 5p2z1T

]

]xS zx

A11zx
2D ,

~4!

~uy1vx!~12zx
2!12zx~vy2ux!50, ~5!

all imposed at the free surfacey5z(x,t). All lengths are in
units ofh and time in units ofAh/g; the inverse Bond num
berT5s(rgh2)21 is a dimensionless measure of the impo
tance of surface tension relative to gravity. The solutio
of Eqs. ~1!–~5!, linearized about the basic sta
(u,v,p,z)5(0,0,0,0), are of the form (u,v,p,z)
5„uk(y),vk(y),pk(y),zk…exp(ikx1st), where

suk52 ikpk1C~ukyy2k2uk!, ~6a!

svk52pky1C~vkyy2k2vk!, ~6b!

ikuk1vky50, ~7!

subject to the conditions

uk~21!5vk~21!50 ~8!

and

szk5vk~0!, 2Cvky~0!5pk~0!2~11k2T!zk ,

uky~0!1 ikvk~0!50, ~9!

together with the requirementz050 imposed by mass con
servation.

When kÞ0 Eqs. ~6! and ~7! can be written as a singl
fourth-order eigenvalue problem forvk(y) whose solution is
of the form

vk~y!5acoshky1bsinhky1ccoshqy1dsinhqy, ~10!

whereq2[(s/C)1k2. The imposition of the boundary con
ditions ~8! and ~9! leads to the dispersion relation@5#

k~11Tk2!~qcoshqsinhk2kcoshksinhq!

5C2@4k2q~k21q2!1~k416k2q21q4!ksinhksinhq

2~5k412k2q21q4!qcoshkcoshq#, ~11!

from which one can computeq5q(k;C,T) and hence obtain
s[C(q22k2). For the special casek50 the solutions

are of the form (u0 ,v0 ,p0 ,z0)}„cos@(n11
2)py#,0,0,0),

n50,1,2, . . . , with s52C(n1 1
2 )2p2, which is always

strictly negative.
In the following we study the asymptotic behavior of th

solutionss of Eq. ~11! when C!1. We distinguish three
different regimes depending on the magnitude of the w
numberk.

When k5O(1), i.e., the wavelength of the modes is
the order of the depth of the fluid layer, the dispersion re
tion ~11! has two types of solutions. Earlier work focused
the gravity-capillary modes@6#
-
s

e

-

s56 iAk~11Tk2!tanhk

2
@k~11Tk2!tanhk#1/4

sinh2k
kS 16 i

A2
DAC

2k2S 21
513tanh2k

16sinh2k
D C1•••, ~12!

characterized byqr;C21/2@1 (qr.0). These modes oscil
late with O(1) dimensionless frequency; their decay rate
proportional toAC, provided thatC is sufficiently small.
However, the dispersion relation~11! has another class o
solutions as well, theviscousmodes, for whichuqu5O(1).
At leading order these are given by

qcoshqsinhk5kcoshksinhq. ~13!

This equation has infinitely many solutions of the for
q5 i jn(k), n51,2, . . . ,where thejn(k) are monotonically
decreasing functions ofk satisfying

lim
k→`

jn~k!5np, np<jn~k!<S n1
1

2Dp,

lim
k→0

jn~k!5jn~0!, jn~0!5tanjn~0!. ~14!

Thus

s52C@k21jn
2~k!#1••• ~15!

and the viscous modes decaymore slowlythan the gravity-
capillary modes for sufficiently small values ofC. These
purely decaying modes are absent from the inviscid form
lation and are unaffected by capillary effects at leading or
because they do not produce surface deformations. This
be readily seen from Eq.~10!, which implies that
uvku,uvkyu,uvkyyu5O(1) @recall that k,uqu5O(1) for these
modes#, and Eqs.~6! and ~7!, which imply uuku5O(1) and
upku5O(C). From the second condition in Eq.~9! it now
follows that uzku5O(C).

In the limit of very large wavelengths,k!1, the solutions
of Eq. ~11! are given by

k̃ 2 ~qcoshq2sinhq!52q5coshq, ~16!

where k̃5k/C5O(1). Thefrequency Im(s) of the gravity-
capillary modes vanishes fork<C k̃1, wherek̃151.3650. At
this point these modes split into two real decaying mod
with Res(k)→0 and Res(k)→2(p/2)2C, ask→0. The vis-
cous modes are also given by Eq.~16!, but with q5 iqi . For

these modess(k)→2C(n1 1
2 )2p2, n51,2, . . . , ask→0,

and the viscous modes approach thek50 results, except tha
s(0)50 is excluded by mass conservation.

When k@1 the viscous modes@q5O(1)# decay at the
rate s52C(k21n2p2), while the gravity-capillary modes
(qr@1) satisfy

q̃412 q̃ 2 k̃224 q̃ k̃31 k̃ 31 k̃ 450,

k̃[kC2/T, q̃[qC2/T, ~17!



5546 56CARLOS MARTEL AND EDGAR KNOBLOCH
FIG. 2. Dispersion relations(k) for T51 andC51026 in the three ranges ofk identified in Sec. II:~a! gravity-capillary~‘‘inviscid’’ !
modes and~b! first two viscous modes. Dots indicate the exact solution of Eq.~11!; the asymptotic results~12! throughO(C1/2) andO(C)
are indicated by dashed and solid lines, respectively.
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with k̃5O(1) and q̃5O(1). For k> k̃2T/C2, where
k̃251.7200, the capillary modes are overwhelmed by visc
ity and again split into a pair of decaying real modes who
leading-order decay rates are given by

s520.9124Ck21•••, s52
T

2C
1•••. ~18!

These results are illustrated in Fig. 2 forC51026 and
T51. The figures show~a! Re(s) and Im(s) for the slowest-
decaying gravity-capillary mode and~b! Re(s) for the two
slowest-decaying viscous modes, as functions ofk for the
three different ranges ofk identified above. The dots indicat
the exact solutions of the dispersion relation~11! computed
using numerical continuation techniques; the dashed l
show the decay rate Re(s) given by Eq.~12! truncated at
O(C1/2) while the solid lines show the results from the tru
cation atO(C). Evidently, for k'2 or greater the secon
-
e

s

term in Eq.~12! must be retained. As discussed further b
low, this effect becomes more important for larger~and more
realistic! values ofC!1, i.e., the leading-order asymptot
approximation to the decay rate provides a poor approxim
tion to the decay rate under experimentally relevant con
tions. This is because theO(C1/2) decay rate of the gravity-
capillary modes decreases exponentially with increasink
and eventually becomes negligible compared with theO(C)
term. This is a consequence of the fact that the damping
comes from the boundary layer at the bottom wall becom
exponentially small ask increases, allowing theO(Ck2) vis-
cous dissipation in the body of the fluid to dominate.

III. DISCUSSION

As mentioned in Sec. I, current treatments of the Fara
instability ignore the presence of the viscous modes
hence are formally valid only when
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a

g
1

ld

v
!

Ck2

v
, ~19!

where, for k5O(1), 2ld is given by the real part o
Eq. ~12!. Since the viscous modes decay more slowly th
the ~unforced! gravity-capillary modes whenC is less than
O(1024), this condition cannot be satisfied in small viscos
liquids. In fact, we have examined a large number
the experiments described in the literature and find t
a/g is always larger than 0.05, i.e., much larger than
O(C) magnitude implied by Eq.~19!.

These results indicate that the current theoretical un
standing of nominally inviscid experiments may require
examination. This conclusion is supported by the disagr
ment between predicted and observed decay rates of the
few natural modes of oscillation@7,8#. This disagreemen
persists even when steps are taken to eliminate uncertai
due to dissipation in the meniscus, at the free surface, o
corners of the experimental apparatus, as in the experim
of Henderson and Miles@7#. In these experiments a circula
cylinder is filled to the brim, pinning the contact line to th
~sharp! rim of the container. The circular nature of the co
tainer reduces the unknown dissipation that might arise
result of the presence of corners. The authors measured
decay rates of the first few natural~unforced! oscillation
modes in such a configuration for both clean and conta
nated surfaces. While the measured frequencies agreed
with leading-order asymptotics, the decay rates for a cl
surface differed from the predicted ones by as much
300%. In Fig. 3 we show the frequencies and decay rate
gravity-capillary waves in a horizontally unbounded layer
the parameter values employed in the experiments of He
erson and Miles @7#, i.e., T50.5131022 and
C50.4331024. The results from leading-order asymptoti
~12! throughO(C1/2) andO(C) are indicated by dashed an

FIG. 3. Gravity-capillary modes fork5O(1), plotted as in Fig.
2, but for the parameter values used in@7#: T50.5131022 and
C50.4331024.
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solid lines, respectively, and compared with the exact re
~points! computed directly from Eq.~11!. Although the
frequencies match very accurately the leading-or
asymptotic prediction, this is not so for the decay rat
For k.1 the leading-order asymptotic prediction underes
mates the decay rate by anO(1) amount. However, the
figure also shows that, with theO(C) correction retained in
Eq. ~12!, the asymptotic prediction reproduces the ex
result very well. Indeed, the effect of this correction is of t
right order of magnitude to suggest that the discrepancy
tween the measured and predicted decay rates in
Henderson-Miles experiments will disappear if the theore
cal predictions includeO(C) corrections to the decay
rate. This suggestion will be explored elsewhere@9# and is
supported by the observation that the discrepancy betw
theory and measurement increases with the wave num
cf. Fig. 3. A similar observation resolves discrepancies
tween leading-order asymptotics and measured decay
of oscillations of liquid bridges, as discussed by Higue
et al. @10#.

For the values ofC used by Henderson and Miles@7# the
damping rates of the gravity-capillary and viscous modes
comparable. Despite this, the measured damping rates o
gravity-capillary modes are most likely not contaminated
the presence of the viscous modes because the damping
were obtained through surface elevation measurements
at leading order, the viscous modes do not deform the
surface.

As mentioned in the Introduction, a detailed knowledge
the nearly neutral modes is of paramount importance in
development of a weakly nonlinear theory for the Farad
system. The analysis presented in this paper demonst
that in typical experiments@7,8# the gravity-capillary and
viscous modes decay with similar decay rates. Conseque
the appropriate normal form equations governing wea
nonlinear evolution of the driven modes must take in
account the infinitely many branches of almost neutral v
cous modes. These manifest themselves at second ord
the wave amplitude as viscosity-induced slowly varyi
streaming flows@11# and these in turn contribute to the co
efficients of the cubic terms in the amplitude equations
the gravity-capillary modes@12#. These effects are known t
be important in the theory of~unforced! water waves@13#
and cannot be captured by a theory based on the pote
formulation: the small viscosity limit is a singular limit tha
cannot be successfully treated as a regular perturbation o
inviscid case. Similar conclusions apply to nearly invisc
liquid bridges, as discussed in detail by Nicola´s and Vega
@14#.
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